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Abstract: During the past decade, it has been quite successful to observe how computational topology has 

incorporated some of the fundamental concepts and ideas from algebraic and differential topology into applications. 

This fusion of theories gave birth to a new field named Topological Data Analysis (TDA), which has a significant 

value in various fields, ranging from computational biology to personalized medicine and dynamic data analysis. 

Going beyond its foundational applications, TDA has enriched and complemented classical machine and deep 

learning frameworks in establishing what is now known as "topological machine learning." In this paper, we review 

the present landscape of this emerging field, emphasizing how it merges with machine learning algorithms such as 

deep neural networks. Each method confers special advantages, targeting areas like machine learning integration, 

network reconstruction, classification of network regimes, or reduction of noisy data. We described common 

methodologies, discussed current implementations, and anticipate future challenges in topological machine learning. 
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1. Introduction 

TDA is one of the most important tools in 

machine learning, particularly in Physics 

and real-world applications [1]. Topological 

data analysis excels in studying high-

dimensional data and is robust against noise. 

It has been applied and proved success in a 

variety of fields, from physics phase 

transition detection to the classification of 

mixed data types, like heart disease 

prediction. TDA methods have also been 

extended in their applicability to 

multivariate time series data. This is 

achieved through persistent homology and 

Wasserstein distances for mapping data into 

point clouds for analysis. Such a method has 

proven effective in tasks like room 

occupancy prediction and activity 

recognition. Moreover, TDA combined with 

machine learning already found an 
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application in the following algorithm of 

climate science: automatic recognition of 

atmospheric rivers in the climate data, hence 

informing extreme weather events and 

climate change scenarios [2]. Topological 

mathematics is that part of mathematics that 

deals with topological properties, those 

properties of space preserved under 

continuous transformations. 

This, in combination with machine learning, 

forms very powerful tools and 

methodologies for the understanding of 

complex data structures. Topological 

mathematics gives an extremely different 

view on understanding data; it uncovers 

structures that, under traditional methods, 

might become invisible. By fusion of 

topological insight with machine learning, 

we will be able to construct models that are 

at the same time more robust, interpretable, 

and powerful in modelling complexity in 

real-world data. The interplay between 

Topology and Machine Learning thus 

establishes a new frontier of research and 

applications of importance to both data 

scientists and mathematicians. In[3] many 

examples in this domain include Persistent 

Homology in Image Analysis, whereby the 

topology of images is analyzed to help 

recognize shapes and patterns, which is 

useful during the classification and 

segmentation of images;  

Time-series data's topological features—

using TDA, cyclic patterns may be captured  

in time series data that would aid in 

forecasting and anomaly detection; and 

Mapper Algorithm for Data Visualization 

[4], which allows for a simplified means of 

visualizing complex data sets and brings to 

the fore clusters and other structures not 

otherwise apparent within the raw data.  

2. A Brief Overview  of Topological 

Mathematical Methods 

Topological and mathematical methods for 

the analysis of data, along with machine 

learning and a number of basic mathematical 

notions and formulae, are used to understand 

complex structures. Some of the main basic 

equations and notions that find broad 

application include: 

1) Persistent homology: A technique 

to study the shape and structure of high-

dimensional data; it is calculated by 

constructing a set of geometric shapes (such 

as simple complexes) and then studying 

their topological properties as the size 

changes. Equations involved in computing 

persistent homology as mentioned in [1]: 

Chain Complexes and Homology: One 

common framework in which one can 

compute these homological invariants from 

topological spaces is chain complexes. This 

could be such invariants like homology 

groups, which represent dimensions of 
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cycles in data that cannot be continuously 

transformed into each other. 

Equations related to the boundary maps :

𝜕𝑘(𝜎) = ∑ 𝜎 ° 𝐹𝑖
𝑘

𝑖                        (1) 

Where 𝐹𝑖
𝑘 in equation 1 represents the face 

maps of the simplex and 𝜕𝑘  Are the 

boundary operators that connect k-simplices 

to (k−1) -simplices 

Vietoris-Rips Complex 

For a point cloud X, a Vietoris-Rips 

complex VRϵ(X) VR at scale ϵ\epsilonϵ 

includes: 

 Vertices: All points in X. 

 Edges: An edge between points xxx 

and y if d(x,y )≤ ϵ d(x, y) where d is a 

distance metric (e.g., Euclidean distance). 

 Higher-dimensional simplices: A k-

simplex is formed if an edge connects 

every pair of vertices in the simplex. 

Betti Numbers: 

The Betti number βk  at scale ϵ is the rank of 

HK: βk(ϵ)= rank(Hk(VRϵ(X))).  This counts 

the number of k-dimensional holes (like 

loops or voids) in VRϵ(X) 

Homology Groups 

The kth homology group Hk of complex K 

captures k-dimensional holes and is 

computed as:  

H k(K) = ker(∂k)/im(∂k+1)                 (2) 

Where ker (∂k ) in equation 2   is the kernel 

of ∂k  (cycles) and im(∂k+1)\ is the image of 

∂k+1 (boundaries). 

2) Jaccard Similarity Coefficients: 

Used to measure the similarity 

between data sets:

J (A, B) = 
 |𝐴∩𝐵|

|𝐴∪𝐵|
               (3) 

Where 𝐴 and 𝐵  in equation (3) two sets of 

elements.  

3) Fractal Dimension Techniques: The fractal 

dimension D, D is given by  

 𝐷 =
log 𝑁(𝜖)

log(1/𝜖)
                           (4) 
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 Fig (1): (a) A simple example of representing shape and (b) analyzing it using the persistent diagram 

Where 1/𝜖 equation (4) is the scale, and 𝑁 (𝜖) 

is the number of balls needed to cover the data. 

A persistent diagram is a topological tool used 

to analyze data and understand complicated 

structures and their evolution across several 

scales. This kind of analysis is mainly used 

within the persistent method, which is part of 

data topology. They all start from a set of data 

by making a simple polynomial complex, 

which will grow aggressively as the scaling 

parameter increases. In this structure, the 

creation and disappearance of holes are tracked 

as ϵ varies. The time (in terms of ϵ) at which 

each hole is born and dies—that is when it 

appears and disappearsin the structure that is  

recorded. These birth and death events are 

represented by points in a persistence diagram, 

which shows the horizontal axis of  birth and 

the vertical axis of death. The points in the 

diagram are further analyzed to recognize the 

key topological features from the data. Points 

close to the line 𝑦= x   are considered 

unimportant or noisy features because they do 

not persist for long periods. Points that are far 

from the line y=x indicate features that persist 

for a long time and are considered structurally 

significant in the data. Fig(1) shows a simple 

example of representing shape and analyzing it 

using the persistent diagram. It contains two 

parts: the first part shows the "shape" consisting 

of distributed points forming a rough circle, and 

the second part is the "diagram," which is used 

to analyze the topological properties of the 

shape.  

a b 



MJPS,   VOL. (11),   NO. (2),   2024 

48 
 

The points form a circle-like shape. This can 

indicate a circular cluster in the data or 

represent a specific distribution of some 

variables around a certain center. This diagram 

shows the persistent persistence of topological 

features in the figure. Red Dots: Each dot 

represents a topological hole (like the holes in a 

doughnut or the segments of a circle in this 

case). The birth axis shows when the 

topological feature (hole) appeared in the 

figure. The death axis shows when the feature 

disappeared. The top red dot represents a more 

significant or persistent topological feature, 

appearing early and persisting for a long time 

before disappearing. Points within this area 

show topological features that have short 

persistence (appear and disappear rapidly) and 

are often considered to be the result of noise or 

small variations in the data.  

The cyclic graph shows the presence of 

topological holes of different permanence in 

circular shapes and highlights the basic 

properties of the analyzed data structure. This 

technique is used to evaluate how topological 

features can contribute to a deeper and more 

useful understanding of the data. 

3. Literature Review 

3.1 Paper Selection Methodology 

The papers represent state-of-the-art 

computational and mathematical tools 

applied in data analysis and network 

topology within several fields [2] 

considering issues of topological data 

analysis for physics, where graph theory is 

implemented to understand complex data 

structures.  

Tis study  [5]discusses the issues of 

reconstructing network topologies through 

matrix decomposition to pull out hidden 

structures in dynamical systems. This study [6] 

classifies the dynamics of neuronal networks 

and analyze these structures more in-depth by 

means of persistent homology. This literature 

[7]enhances the process development with 

graph neural networks to ensure data security in 

the analysis of plant topology data.  

The proposal of [8] suggests a Bayesian 

approach to learning graphs from noisy data 

toward the simultaneous learning of the 

structure and noise variance. In[9]developed a 

topological machine-learning pipeline with a 

systematic selection of methods to transform 

Persistence Diagrams for applications in 

machine learning to improve accuracy in data 

classification Table 1. Shows the comparison of 

the methodologies of each study in detail:   
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Table 1: Comparison of the used methodologies and effectiveness of each study in detail.  

 

Ref 

 

Year Method Advantage Disadvantage 

Doddi and 

Salapaka[5] 
2019 

Matrix 

Decomposition 

Techniques 

Effective in network 

topology 

reconstruction, precise 

with unique 

decomposition 

strategies for complex 

networks. 

Relies heavily on the 

quality and quantity 

of data samples, 

which may not always 

be sufficient. 

Bardin, 

Spreemann, and 

Hess[3] 

2019 
Persistent 

Homology 

Classifies network 

regimes effectively, 

providing deep 

insights into network 

dynamics and 

structure. 

The specificity of 

application to 

neuronal networks 

might not generalize 

across other types of 

networks. 

S. Sardellitti, S. 

Barbarossa, and 

P. Di 

Lorenzo[14] 

2019 

Graph Topology 

Inference Based on 

a Laplacian matrix 

Laplacian Pooling in 

Graph Neural 

Networks (GNNs) can 

facilitate learning 

sparse graph 

representations by 

focusing on important 

features while 

reducing less 

significant 

connections. 

Lead to challenges in 

accurately modeling 

relationships in data, 

particularly in 

complex networks. 

Mattioli et 

al.[10] 
2019 

Genetic Algorithms 

for DNN Topology 

Selection 

Efficiently explores 

large parameter spaces 

to optimize DNN 

architectures with 

minimal human 

intervention. 

The effectiveness of 

GAs can vary and 

might require 

substantial 

computational efforts 

to achieve optimal 

results. 

N. L. Holanda 

and M. A. R. 

Griffith[13] 

2020 

Supervised 

learning algorithm 

to learn topological 

phases 

Ability of machine 

learning to advance 

the research on exotic 

quantum materials 

with properties 

Requirement for a 

sufficient amount of 

labeled training data, 

which can be 

challenging to obtain 

in experimental 

settings 

Riihimäki et 

al.[11] 
2020 

TDA-based 

Classifier for 

Handles multiple 

measurements 

Underperforms in 

certain scenarios 
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Repeated 

Measurements 

effectively and is 

useful in biological 

and ecological data 

analysis. 

compared to standard 

methods like SVM. 

Sultana and 

Tamanna[8] 
2021 

Bayesian 

Framework and 

Minimum Mean 

Square Estimation 

It provides a robust 

method for learning 

graph structures and 

reducing noise from 

noisy data. 

It may require 

complex 

computational 

resources and a deep 

understanding of 

Bayesian methods. 

 

 

C. Wu and C. 

A. 

Hargreaves[15] 

2021 

TopMix method 

represents an 

innovative 

approach to 

topological 

machine learning 

It utilizes principles 

from topology to 

effectively handle 

both categorical and 

continuous data types, 

improving 

classification 

performance in 

complex datasets. 

Limitations, 

particularly in 

handling mixed data 

types effectively. 

B. Narayan and 

A. Narayan[16] 
2021 

non-Hermitian Su-

Schrieffer-Heeger 

(SSH) model and a 

non-Hermitian 

nodal line 

semimetal 

Improved accuracy, 

successfully learning 

to predict complex 

topological phases 

Focuses on materials 

with nodal lines in 

their band structure, 

where the conduction 

and valence bands 

touch along a line in 

momentum space. 

A. Kerr, G. 

Jose, C. Riggert, 

and K. 

Mullen[17] 

2021 

 (TQPTs) are 

identified by 

computing the 

topological index 

as a function of 

system  parameters  

This approach helps to 

map out regions in 

parameter space 

where the properties 

of the quantum state 

change, indicating 

different phases  

Process involves 

complex calculations 

and interpretations, 

making it a 

challenging task in 

the area of 

mathematical 

chemistry and 

quantum physics. 

Conti, Moroni, 

and Pascali[9] 
2022 

Topological 

Machine Learning 

Pipeline 

A systematic approach 

with a focus on 

selecting suitable 

filtrations and 

transformations for 

machine learning 

applications. 

The success of the 

method hinges on the 

choice of appropriate 

filtrations and 

representations, which 

can be challenging to 

determine. 

Singh et al.[12] 2022 
Algebraic 

Topology-based 

Effective in predicting 

hepatic 

The method's 

performance and 
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Machine Learning 

on MRI Data 

decompensation in 

PSC patients using 

advanced topological 

data analysis of MRI 

features. 

generalizability may 

depend heavily on the 

quality and 

consistency of the 

MRI data. 

Leykam and 

Angelakis[2] 
2023 

Topological Data 

Analysis (TDA) 

It provides a 

systematic approach 

to defining the shape 

of data and is useful 

for phase detection 

and machine learning 

integration. 

The complexity of 

graph theory concepts 

may limit 

accessibility for those 

without a background 

in the field. 

Jonas Oeing and 

Kevin Brandt[7] 
2023 

Graph Learning 

with Graph Neural 

Networks 

Enhances process 

development by 

analyzing machine-

readable plant 

topology data, 

implemented in a 

secure local 

environment. 

Limited to the 

specific software and 

may not extend to 

other platforms or 

broader contexts 

without adaptation. 

 

 

3.2 Recent Studies of  Topological Data 

Analysis (TDA) and Machine Learning 

TDA encompasses computational methods 

[2] dedicated to rigorously defining and 

analyzing the "shape" of complex, discrete 

data within high-dimensional settings. There 

is increasing interest in TDA from 

physicists, particularly those studying 

topological materials or incorporating 

machine learning into their work. This 

review seeks to explore the forefront 

applications of TDA in physics, offer an 

accessible explanation of its fundamental 

techniques, and highlight potential areas for 

further investigation. TDA employs 

concepts from graph theory to measure the 

intuitive geometries of discrete data sets, 

such as point clouds. The approach involves 

constructing a graph by linking sufficiently 

proximate points and then calculating the 

graph's topological invariants, like the 

number of k-dimensional holes, thereby 

simplifying the task of shape measurement 

to basic linear algebra operations on the 

graph's vertices and edges. This document 

provides a brief overview of TDA's core 

principles and its specific uses in physics, 

emphasizing phase detection and integration 

with machine learning, and proposes future 

research possibilities at the confluence of 

TDA and physics. 

The research paper [5] focuses on 
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reconstructing the network topology of 

linear dynamical systems with latent nodes, 

allowing directed loops and bi-directed 

edges. Matrix decomposition techniques are 

used to extract the structure of the network 

from observed nodes involving sparse and 

low-rank matrices. It discusses conditions 

and methods for decomposing the Inverse of 

the Power Spectral Density Matrix (IPSDM) 

into sparse and low-rank components to 

identify the moral graph and Markov 

Blanket of hidden nodes. It explores the 

unique decomposition of skew-symmetric 

matrices into sparse and low-rank 

components, which is essential for topology 

learning. Addresses the reconstruction of 

exact network topology using IPSDM and 

provides concentration bounds on the error 

between estimated and true IPSDM from 

limited data samples. Techniques of Sparse 

Plus Low-rank Matrix Decomposition 

Matrix decompositions are used to 

decompose skew-symmetric matrices into 

sparse and low-rank components. Here, the 

IPSDM would be decomposed into sparse 

and low-rank matrices that help to uncover 

the network structure. 

The process of decomposition helps in the 

identification of a moral graph associated 

with observed nodes and the Markov 

Blanket of hidden nodes. Conditions and 

methods are given for the unique 

decomposition of skew-symmetric matrices 

into sparse and low-rank skew-symmetric 

matrices crucial for topology learning. 

Significance of Unique Decomposition for 

Topology Learning in a scenario where, 

many a time, only some nodes are 

observable, unique decomposition is 

necessary to rebuild the exact network 

topology from observed nodes. It provides 

the moral graph corresponding to observed 

nodes and the Markov blanket of latent 

nodes and provides insight into how a 

network understands relationships. The 

decomposition process allows for the 

distinguishing of spurious links in the moral 

graph formed by observed nodes, hence 

improving the accuracy of the network 

structure by guaranteeing a unique 

decomposition, which in turn enables the 

exact recovery of a topology of the network.  

The method adopted [6] in the paper is 

persistent homology, and it comes from 

algebraic topology. Persistent homology has 

been used in this work to study topological 

aspects of neuronal network activity. This 

contribution of applying persistent 

homology in this context lies within 

classification by network regimes using 

spike train distances. It provides further 

insight into the global properties of network 
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structure and dynamics. The full document 

addresses all specific parameters, 

configurations, measurements, and findings 

for topological exploration in an artificial 

neuronal network using algebraic topology. 

This contains network topology, 

connectivity patterns, neurone models, 

synapse models, plasticity, sources of input, 

measurements taken, and classification 

results and analysis based on persistent 

homology. 

Furthermore, a section of 

acknowledgements and ancillary 

information regarding the neural network 

model of the study and its computational 

resources can be found in this document. 

The equations used in the document include 

equations related to the leaky integrate-and-

fire neuron model, synaptic strength, 

synaptic delay, relative synaptic efficiency 

(g), and relative external rate. Specific 

equations for these parameters were not 

explicitly mentioned in the provided text. 

Still, they are likely part of the mathematical 

models used to simulate artificial neuronal 

networks and classify network regimes 

based on spike train distances. Additional 

details on the specific equations used for 

these parameters may be found in the 

original study referenced in the document. 

The research paper [7] utilizes graph 

learning techniques, focusing on the use of 

graph neural networks (GNNs) to analyze 

machine-readable plant topology data. The 

model used in the Plant Engineer P&ID 

software is trained based on the provided 

data. Details of integrating the model into 

the software and its execution through a 

Docker container containing the pre-trained 

GNN model are explained. Access to P&ID 

data in Graph ML format is done through 

the Docker container, and the results of the 

AI-based consistency check are presented in 

a JSON file used as a communication file. 

The consistency check results are visualized 

in Plant Engineer, highlighting 

inconsistencies in components or 

mismatched links in red. The advantages of 

containerization, such as easy accessibility 

and model encapsulation, are emphasized. It 

is noted that the model can be easily 

replaced by swapping the container. The 

deliberate avoidance of a cloud solution is to 

ensure the data security of P&ID data 

through local processing. The paper 

underscores the importance of machine-

readable plant topologies and demonstrates 

their potential for future process 

development. A comprehensive overview of 

designing machine-readable P&IDs is 

provided, outlining the key benefits of this 
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technology in enhancing engineering 

processes and development.  

The study addresses [8] the problem of 

learning the structure of graphical models 

from noisy multivariate data. The 

researchers aim to represent the unique 

graph structure and estimate the noise 

variance simultaneously. Methodology: A 

Bayesian framework was used to formulate 

the problem, and a minimum mean square 

estimation approach was proposed for data 

demising. Contributions: 1. A Bayesian 

approach was introduced to learn graph 

structure and noise removal from the data. 2. 

A minimum mean square estimation 

approach was proposed for data demising. 3. 

Mathematical equations were developed to 

estimate the noise variance and improve data 

quality. This paper used equations to 

illustrate the relationship between noise 

estimates and variance and mathematical 

calculations for estimating the required 

values. These points represent some of the 

information present in the study, 

highlighting the methodology used, key 

contributions, and important mathematical 

equations employed in the research.  

This paper [9] introduces a topological 

machine learning pipeline, examining the 

theoretical underpinnings that guide the 

selection of specific methodologies, aiming 

to systematize the use of topological data 

analysis in classification tasks. The proposed 

pipeline selects suitable filtrations to link 

Persistence Diagrams (PDs) with digital 

data, employs various methods to convert 

these PDs into vector formats amenable to 

machine learning applications, and assesses 

the pipeline's effectiveness by comparing 

these methods across standard datasets. The 

objective is to establish a pipeline that 

connects digital data with PDs through 

appropriate filtrations and converts these 

PDs into forms usable by machine learning 

algorithms. The primary challenges involved 

representing digital data as an algebraic 

structure with the correct filtration to 

generate its topological summary, the 

Persistence Diagram, and converting the PD 

into a format that can be integrated into 

machine learning algorithms. The paper 

aims to create a straightforward, ready-to-

use pipeline for data classification 

leveraging persistent homology and machine 

learning while also exploring why certain 

combinations of filtration and topological 

representation might be more effective for 

specific datasets and tasks. It provides an in-

depth discussion of the mathematical 

foundations of algebraic topology and 
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persistent homology, which are vital to 

understanding topological data analysis. 

This paper[11] discusses a classification 

approach using (TDA) designed to manage 

multiple measurements. The research 

introduces a classifier developed on the 

principles of TDA for analyzing repeated 

measurement data by sampling from the data 

space and forming a network graph 

reflective of the data’s topological structure. 

This classifier was evaluated through three 

case studies involving tree species 

classification, random point processes, and 

neuron spiking data, demonstrating superior 

performance in most instances compared to 

a conventional support vector machine 

(SVM) voting model. Additionally, the TDA 

classifier offers extra advantages, like 

identifying data subsets of high purity and 

important feature values. TDA employs 

geometric and algebraic topology techniques 

to analyze complex data relationships at a 

large scale. Standard TDA tools typically 

handle only single measurements per 

sample, but biological data often requires 

analysis of multiple measurements per 

sample. The study proposes a TDA-based 

algorithm capable of processing such 

repeated measurement data, inspired by the 

Mapper algorithm and integrated into a 

classifier using the Mapper graph. This 

algorithm incorporates internal cross-

validation and multiple bootstraps to 

enhance partition robustness and reduce 

overfitting risks. It generates subgroupings 

of relevant classes for additional analysis. 

While the TDA classifier outperformed the 

SVM model in tree species and random 

point process analyses, it performed 

comparably to SVM in one neuron spiking 

dataset scenario and less effectively in 

another. The paper concludes that the 

algorithm and its software could 

significantly aid biological research 

involving repeated measurement data, 

serving dual roles as an effective classifier 

and a tool for feature selection. 

In [10] explores the application of genetic 

algorithms (GA) to determine the 

configurations of deep neural networks 

(DNN). Designing a DNN topology 

appropriate for specific problems is 

essentially an optimization challenge, given 

the extensive array of parameters involved, 

such as the number of layers, the number of 

neurons per layer, activation functions, and 

learning algorithms. Due to the immense 

size of the parameter space, a 

comprehensive search is unfeasible, which 

necessitates robust optimization techniques. 

Crafting an effective DNN topology requires 

significant domain knowledge and 
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experience. Traditional methods like random 

search, grid search, and transfer learning fall 

short in identifying the best topologies. The 

paper advocates for the development of 

techniques that facilitate the creation of new 

DNN topologies with minimal human input 

and limited computational demands. The 

authors suggest employing genetic 

algorithms, a type of evolutionary 

computation algorithm that efficiently 

navigates through promising areas of the 

search space and avoids local optima, thus 

potentially lowering the computational effort 

compared to a full search. They assess the 

effectiveness of using GA for DNN 

topology selection, employing a fitness 

function that measures the performance of a 

DNN topology. This GA-based strategy 

aims to find an optimal or nearly optimal 

topology that addresses the problem 

efficiently with reasonable computational 

resources. 

The paper [12] considers the application of 

algebraic topology-based machine learning 

on magnetic resonance imaging (MRI) data in 

estimating hepatic decompensation risk 

among subjects with primary sclerosing 

cholangitis. (PSC)is one of the challenging 

chronic cholestatic liver diseases that can 

lead to cirrhosis and hepatic 

decompensation. It has been very difficult to 

predict the outcomes of PSC patients. The 

challenge of the paper is to predict future 

outcomes, particularly the development of 

hepatic decompensation in patients with 

primary sclerosing cholangitis. In this work, 

inspired by the topological data analysis, 

nonlinear methods are used to extract 

features from MRI in order to predict the 1-

year risk of hepatic decompensation. The 

training was based on the one-center 

derivation and then tested in another 

independent multi-center validation cohort. 

An area under the receiver-operating 

characteristic curve of 0.84 was recorded 

after applying the model to an unbiased 

validation cohort. The authors developed a 

machine learning approach, which they then 

independently validated using algebraic 

topology analysis of magnetic resonance 

imaging data in predicting the risk of early 

hepatic decompensations in patients with 

PSC. The challenge in this regard is that the 

traditional approaches, which include 

qualitative MRI/MRCP prognostic scoring 

systems and quantitative MRCP metrics, are 

limited by their performance, 

reproducibility, and generalizability. The 

authors hypothesized that an algebraic 

topology-based machine learning approach 

could extract more informative features 
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from MRI data to predict clinically relevant 

outcomes in PSC patients better. 

This paper [13] presents a supervised 

machine-learning algorithm capable of 

learning topological phases from the real 

lattice data for finite condensed matter 

systems. The algorithm uses diagonalization 

in real space along with any supervised 

learning algorithm to learn topological 

phases through an eigenvector ensemble 

procedure. The authors combine their 

algorithm with decision trees and random 

forests to successfully recover the 

topological phase diagrams of Su-Schrieffer-

Heeger (SSH) models from real-space lattice 

data. They show how the Shannon 

information entropy of ensembles of lattice 

eigenvectors can be used to retrieve a signal 

detailing how the topological information is 

distributed in bulk. They also explore the 

theoretical possibility of interpreting these 

topological information entropy signatures 

in terms of emergent information entropy 

wave functions, which leads them to 

Heisenberg and Hirschman uncertainty 

relations for topological phase transitions. 

This illustrates how the model explains the 

ability of machine learning to advance the 

research on exotic quantum materials with 

properties that may power future 

technological applications such as qubit 

engineering for quantum computing. 

The paper [14] introduces a technique for 

deducing the topology of a graph from a 

provided dataset. The objective is to 

establish a block-sparse representation of the 

graph signal. A modular graph structure 

characterized by a Laplacian matrix, whose 

eigenvectors are the identified sparsifying 

dictionary, is the result. The approach 

involves two optimization phases: i) 

deriving an orthonormal sparsifying 

transform Word Wide Web (WWW directly 

from the dataset. ii) Determining the 

Laplacian matrix L using the previously 

learnt transform WWW. Initially, the 

transform WWW is developed by 

addressing an optimization problem that 

aims to reduce the reconstruction error while 

ensuring WWW remains orthonormal. 

Subsequently, the Laplacian matrix L is 

derived through a convex optimization 

problem designed to minimize the 

discrepancy between the transform WWW 

and the eigenvectors U of the Laplacian, 

with the condition that L conforms to the 

properties of a valid Laplacian matrix 

(symmetric, positive semi-definite with zero 

row sums). This method has been validated 

using both synthetic and actual brain data to 

infer brain functionality networks in 

epilepsy patients. The findings affirm the 
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method's capability to reconstruct the 

underlying graph topology accurately. The 

primary contribution of this paper is its dual-

step framework that concurrently learns a 

sparse graph representation and the 

corresponding Laplacian matrix from the 

data. 

The newly [15]  introduced TopMix method 

represents an innovative approach to 

topological machine learning, specifically 

designed for processing mixed numeric and 

categorical data. It incorporates TDA 

concepts such as persistent homology, 

persistence diagrams, and Wasserstein 

distance. Applied to a heart disease 

prediction model, TopMix surpasses 

competing advanced algorithms in 

effectiveness. TDA, a modern discipline, 

excels in tackling high-dimensional and 

noisy datasets that include both numeric and 

categorical elements, presenting challenges 

for conventional machine learning 

techniques. Currently, there is a 

standardized framework for using TDA to 

classify such mixed data. A symmetry-

breaking technique is implemented to adapt 

TDA to diverse feature types. Data points 

are transformed into point clouds using 

multiple projection maps, and from these 

clouds, persistence diagrams are created. 

The Wasserstein distance measures the 

disparity between these diagrams. 

Classification is then performed using the k-

nearest neighbors (k-NN) algorithm. Within 

TDA, persistent homology serves as a key 

tool to analyze the "shape" of data and 

extract essential traits. A persistence 

diagram visually maps out a dataset’s 

topological attributes created through 

persistent homology. Wasserstein distance is 

a metric for comparing these diagrams, 

quantifying the differences in topological 

features across datasets. Symmetry breaking 

is employed to adapt TDA to handle varied 

features effectively, where each coordinate 

denotes a distinct attribute. One-hot 

encoding is utilized to transform categorical 

data into binary form, with each category 

represented by a separate column. The 

TopMix method, tested on a dataset 

featuring both numeric and categorical 

variables related to heart disease, aims to 

predict the presence of significant cardiac 

conditions (> 50% luminal narrowing in any 

major pericardial vessel). Experimental 

outcomes demonstrate that TopMix 

outperforms several leading algorithms in 

diagnosing heart disease. 

The paper [16] explores the application of 

machine learning techniques to identify and 

predict non-Hermitian topological phases of 

matter, which exhibit unique properties not 
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found in Hermitian systems. The study 

focuses on models such as the non-

Hermitian Su-Schrieffer-Heeger (SSH) 

model and a non-Hermitian nodal line 

semimetal, demonstrating the use of neural 

networks to classify these phases accurately 

based on their winding number. The model 

demonstrates robustness even with the 

introduction of disorder, maintaining high 

accuracy, which suggests potential for 

experimental data analysis where noise is 

inevitable. For a three-dimensional case, a 

convolutional neural network (CNN) was 

employed due to the fully connected 

network’s inadequacy in handling higher-

dimensional data. The CNN significantly 

improved accuracy, successfully learning to 

predict complex topological phases and 

transitions with about 99.95% accuracy. 

The paper [17] discusses a method for 

identifying topological phase transitions 

using machine learning, specifically through 

diffusion maps. Topological phase 

transitions are different from conventional 

phase transitions as they are not 

characterized by local order parameters but 

by global topological indices. The authors 

introduce a heuristic that automates the 

process of selecting hyperparameters for 

diffusion maps, allowing for the 

unsupervised identification of topological 

phase boundaries without prior knowledge 

of the underlying topological invariant. 

Topological quantum phase transitions 

(TQPTs) differ from classical phase 

transitions as they are indicated by a change 

in a topological invariant, not by 

spontaneous symmetry breaking and local 

order parameters. TQPTs are identified by 

computing the topological index as a 

function of system parameters and mapping 

regions with different indices. The authors 

propose a heuristic that automatically 

determines the optimal hyperparameters for 

diffusion maps, eliminating the need for user 

intervention. This heuristic optimizes the 

resolution parameter by minimizing the 

mean squared error (MSE) between the 

similarity matrix derived from the data and 

an ideal similarity matrix. 

4. Conclusions 

This study reviews several state-of-the-art 

computational techniques and their 

integration into various scientific and 

technological fields during the period 2019 

to 2023. These include Topological Data 

Analysis, Matrix Decomposition 

Techniques, Persistent Homology, Graph 

Learning with Graph Neural Networks, 

Bayesian Framework and Minimum Mean 

Square Estimation, and a Topological 

Machine Learning Pipeline. Each of these 
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methods confers special advantages, 

targeting areas like machine learning 

integration, network reconstruction, 

classification of network regimes, or 

reduction of noisy data. However, these 

techniques also, , come along with several 

challenges and limitations such as: 

difficulty in TDA concepts, quality, and 

quantity of data required for matrix 

decomposition, specificity of applications 

by persistent homology, limitations in 

software for graph learning, complexity of 

Bayesian methods, and dependence upon 

suitable representations for topological 

machine learning pipelines. 
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